Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(12): 1716-1728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37903921

RESUMEN

Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.


Asunto(s)
Microbiota , Suelo , Microbiota/genética , Microbiología del Suelo , Biología Sintética , Biotecnología
2.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897939

RESUMEN

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Edición Génica , Bacterias/genética , ADN
3.
Bioinform Adv ; 3(1): vbad005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36789294

RESUMEN

Motivation: The vast expansion of sequence data generated from single organisms and microbiomes has precipitated the need for faster and more sensitive methods to assess evolutionary and functional relationships between proteins. Representing proteins as sets of short peptide sequences (kmers) has been used for rapid, accurate classification of proteins into functional categories; however, this approach employs an exact-match methodology and thus may be limited in terms of sensitivity and coverage. We have previously used similarity groupings, based on the chemical properties of amino acids, to form reduced character sets and recode proteins. This amino acid recoding (AAR) approach simplifies the construction of protein representations in the form of kmer vectors, which can link sequences with distant sequence similarity and provide accurate classification of problematic protein families. Results: Here, we describe Snekmer, a software tool for recoding proteins into AAR kmer vectors and performing either (i) construction of supervised classification models trained on input protein families or (ii) clustering for de novo determination of protein families. We provide examples of the operation of the tool against a set of nitrogen cycling families originally collected using both standard hidden Markov models and a larger set of proteins from Uniprot and demonstrate that our method accurately differentiates these sequences in both operation modes. Availability and implementation: Snekmer is written in Python using Snakemake. Code and data used in this article, along with tutorial notebooks, are available at http://github.com/PNNL-CompBio/Snekmer under an open-source BSD-3 license. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

4.
Chem Commun (Camb) ; 58(58): 8113-8116, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35770883

RESUMEN

Development of profiling strategies to provide high resolution understanding of enzymes involved in bacterial infections remains an important need. These strategies help resolve enzyme mechanisms of actions and can guide therapeutic development. We have developed a selective new activity-based probe (ABP) targeting a highly conserved surface bound enzyme, C5a peptidase, present in several pathogenic Streptococci. We demonstrate our probe inhibits C5a peptidase activity and enables detection of C5a peptidase expressing pathogens in microbial mixtures. Our profiling strategy selectively labels the pathogen by phenotype and enables specific isolation of the live bacteria providing a route for further in-depth investigation. This study paves the way towards a rapid detection, isolation, and characterization pipeline for existing and emerging strains of most common pathogenic Streptococci.


Asunto(s)
Streptococcus pyogenes , Factores de Virulencia , Adhesinas Bacterianas , Endopeptidasas/genética , Endopeptidasas/metabolismo , Endopeptidasas/farmacología
5.
Comput Struct Biotechnol J ; 18: 1259-1269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612750

RESUMEN

Microbial communities organize into spatial patterns that are largely governed by interspecies interactions. This phenomenon is an important metric for understanding community functional dynamics, yet the use of spatial patterns for predicting microbial interactions is currently lacking. Here we propose supervised deep learning as a new tool for network inference. An agent-based model was used to simulate the spatiotemporal evolution of two interacting organisms under diverse growth and interaction scenarios, the data of which was subsequently used to train deep neural networks. For small-size domains (100 µm × 100 µm) over which interaction coefficients are assumed to be invariant, we obtained fairly accurate predictions, as indicated by an average R2 value of 0.84. In application to relatively larger domains (450 µm × 450 µm) where interaction coefficients are varying in space, deep learning models correctly predicted spatial distributions of interaction coefficients without any additional training. Lastly, we evaluated our model against real biological data obtained using Pseudomonas fluorescens and Escherichia coli co-cultures treated with polymeric chitin or N-acetylglucosamine, the hydrolysis product of chitin. While P. fluorescens can utilize both substrates for growth, E. coli lacked the ability to degrade chitin. Consistent with our expectations, our model predicted context-dependent interactions across two substrates, i.e., degrader-cheater relationship on chitin polymers and competition on monomers. The combined use of the agent-based model and machine learning algorithm successfully demonstrates how to infer microbial interactions from spatially distributed data, presenting itself as a useful tool for the analysis of more complex microbial community interactions.

6.
ACS Synth Biol ; 8(9): 2069-2079, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31419124

RESUMEN

The fast-growing nonmodel marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order to further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences, and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that, while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this nonmodel chassis.


Asunto(s)
Biología Sintética/métodos , Vibrio/crecimiento & desarrollo , Proteínas Bacterianas/genética , Variaciones en el Número de Copia de ADN , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Ribosomas/metabolismo , Vibrio/genética
7.
Nucleic Acids Res ; 47(6): 3244-3256, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30788501

RESUMEN

Precision genome editing accelerates the discovery of the genetic determinants of phenotype and the engineering of novel behaviors in organisms. Advances in DNA synthesis and recombineering have enabled high-throughput engineering of genetic circuits and biosynthetic pathways via directed mutagenesis of bacterial chromosomes. However, the highest recombination efficiencies have to date been reported in persistent mutator strains, which suffer from reduced genomic fidelity. The absence of inducible transcriptional regulators in these strains also prevents concurrent control of genome engineering tools and engineered functions. Here, we introduce a new recombineering platform strain, BioDesignER, which incorporates (i) a refactored λ-Red recombination system that reduces toxicity and accelerates multi-cycle recombination, (ii) genetic modifications that boost recombination efficiency, and (iii) four independent inducible regulators to control engineered functions. These modifications resulted in single-cycle recombineering efficiencies of up to 25% with a 7-fold increase in recombineering fidelity compared to the widely used recombineering strain EcNR2. To facilitate genome engineering in BioDesignER, we have curated eight context--neutral genomic loci, termed Safe Sites, for stable gene expression and consistent recombination efficiency. BioDesignER is a platform to develop and optimize engineered cellular functions and can serve as a model to implement comparable recombination and regulatory systems in other bacteria.


Asunto(s)
Bacteriófago lambda/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Mutagénesis/genética , Cromosomas Bacterianos/genética , Recombinación Homóloga/genética
8.
J Mol Biol ; 428(5 Pt B): 928-44, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26546279

RESUMEN

Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems.


Asunto(s)
Adaptación Biológica , Ingeniería Celular/métodos , Biología Sintética/métodos , Evolución Molecular , Redes Reguladoras de Genes , Humanos
9.
ACS Synth Biol ; 2(1): 59-62, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23656326

RESUMEN

Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.


Asunto(s)
Alcanos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biocombustibles/microbiología , Vías Biosintéticas , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Petróleo/microbiología
10.
Proc Natl Acad Sci U S A ; 109(42): 16817-22, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22927382

RESUMEN

The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch's behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis--suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks.


Asunto(s)
Escherichia coli/genética , Expresión Génica , Redes Reguladoras de Genes/genética , Ingeniería Genética/métodos , Repeticiones de Microsatélite/genética , ADN Espaciador Ribosómico/genética , Evolución Molecular Dirigida/métodos , Biblioteca de Genes , Tasa de Mutación
11.
ACS Synth Biol ; 1(8): 365-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23651290

RESUMEN

Recent advances in the design and construction of synthetic multicelled systems in E. coli and S. cerevisiae suggest that it may be possible to implement sophisticated distributed algorithms with these relatively simple organisms. However, existing design frameworks for synthetic biology do not account for the unique morphologies of growing microcolonies, the interaction of gene circuits with the spatial diffusion of molecular signals, or the relationship between multicelled systems and parallel algorithms. Here, we introduce a framework for the specification and simulation of multicelled behaviors that combines a simple simulation of microcolony growth and molecular signaling with a new specification language called gro. The framework allows the researcher to explore the collective behaviors induced by high level descriptions of individual cell behaviors. We describe example specifications of previously published systems and introduce two novel specifications: microcolony edge detection and programmed microcolony morphogenesis. Finally, we illustrate through example how specifications written in gro can be refined to include increasing levels of detail about their bimolecular implementations.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Algoritmos , Simulación por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Programas Informáticos , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...